If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x-90=0
a = 3; b = 1; c = -90;
Δ = b2-4ac
Δ = 12-4·3·(-90)
Δ = 1081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1081}}{2*3}=\frac{-1-\sqrt{1081}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1081}}{2*3}=\frac{-1+\sqrt{1081}}{6} $
| 14-x=49 | | 2(x-5)+1=3 | | 17+3p=2 | | w+15=94 | | 5s+12=27 | | x-5=10,x= | | 4x+12=-28+2x | | x^2+13x+22=7x | | 4y+1=7y+2 | | 6x=42,x= | | (x+5)⁴=16 | | 7p-4=59 | | w-8=46 | | -5y-4=3y-8 | | x/8=4,x= | | 77=5p | | 5y+30=2y-6 | | 37×1/n=0.037 | | g^2+7g-3g=0 | | 80=5p+3 | | 28x^2+28x+96=0 | | 8+8x=15x | | x+5/2=x+7 | | 5d-3d+10=41 | | -15y+47=5y-17 | | 12x^2+4x-360=0 | | X+5~2=x+7 | | 4y+19=-2y-17 | | -5(3t+1)=-20 | | 4y+19=2y-17 | | 7x-6x=5x+6 | | -2x-11=-27 |